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Radiation pressure as a source of decoherence
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We consider the interaction of an harmonic oscillator with the quantum field via radiation pressure. We show
that a “Schralinger cat” state decoheres in a time scale that depends on the degree of “classicality” of the
state components, and which may be much shorter than the relaxation time scale associated to the dynamical
Casimir effect. We also show that decoherence is a consequence of the entanglement between the quantum
states of the oscillator and field two-photon states. With the help of the fluctuation-dissipation theorem, we
derive a relation between decoherence and damping rates valid for arbitrary values of the temperature of the
field. Coherent states are selected by the interaction as pointer states.

PACS numbd(s): 03.65.Bz, 42.50.Dv

[. INTRODUCTION field transforms an initial pure superposition state of the par-
ticle into a statistical mixture.

Superposition states have an important role in the formal- Of special relevance is the limf=0. In this case, the
ism of quantum mechanics. However, they are in flagranteservoir is the quantum vacuum field, which dissipates the
contradiction with our classical world when the componentsmechanical energy of the oscillating parti¢te “mirror” ).
correspond to macroscopically distinguishable states. Th®&his effect is associated to the emission of pairs of photons,
reason why these states are not encountered classically tise so-called dynamical Casimir effect. Much work has been
decoherence, a process by which the interaction between thyne on quantum radiation from moving mirrg&j. Impor-
degrees of freedom of the system in question with any othefynt properties like the spectrum of the emitted radiaf@in
deg_rees of freedom, either internal_ or exterfitae so-called  the time evolution of the energy-momentum tengid], the
environmenf, leads to a suppression of the coherence begqy) radiated intensity and the dissipative radiation pressure
tween the components of the superpositiah Even if this  ,, the particleradiation reaction force corresponding to the
coupling is very weak, the decoherence rate may be huggyion emission effer{11,12 have been considered. Here

resulting in a very fast decay of these “weird” states and m}/ve focus our attention on the particle as the system of inter-
the emergence of the classical world. Recent developments

. ! . est, and show that decoherence is a consequence of the en-
in technology now allow one to study in real time the proces . :
of decoherence in the lab. For example, over the past sever. nglement between part|cle- anq f'?'d two-photon states.
years techniques have been developed to generate mes uS fes%“t has fundamental |mpI|cat|ons,_ for. It show; that
copic superpositions of motional states of trapped s any particle n_ot transparent to the radiation is ur_la\_/0|dably
and of photon states in cavity quantum electrodynari8gs under the acﬂonl of decoherence through the radiation pres-
In these cases decoherence due to the coupling with the arfr® coupling with vacuum fluctuations. _
bient reservoirs was observed, confirming the expectation The zero temperature limit was briefly discussed in our
that the decoherence rate is faster, the larger and more segy€Vious lettef13]. This paper presents results for finite val-
rated the state components &4é. Recently another experi- ues of temperature, as well as a detailed discussion of the
ment has succeeded in “engineering” the environment in the&¢ase T=0. The formalism relies on the one-dimensional
context of trapped ions, studying scaling laws of decoher{1D) scalar model for the field, but extensions to a 3D elec-
ence theory for a variety of reservoirs in a wide range oftromagnetic field are also discussed, allowing us to address
parameter$5]. the question of orders of magnitude. The paper is organized
Usually, decoherence is analyzed in the framework ofas follows. In Sec. Il we start from the Hamiltonian model
heuristic models that describe phenomenological dissipatiofor the radiation pressure coupling, and then derive a master
(the reservoir is taken to be a collection of harmonic oscilla-equation for the particle. In Sec. Il we discuss how the en-
tors, coupled linearly to the position operator of the systenvironment selects a prefered basis in the particle’s Hilbert
[6,7]). In this paper, we consider instead aln initio model  space, the pointer basis. In Section IV we derive a general
for decoherence of a particle in a harmonic potential, scatrelation between decoherence and damping rates at arbitrary
tering the radiation fieldat temperaturd), which then plays temperature by means of the fluctuation-dissipation theorem.
the role of the reservoir. Starting from first principles, we The zero- and high-temperature limits, including extensions
show that the resulting radiation pressure coupling with theo the 3D electromagnetic model, are discussed in Secs. V
and VI. Section VII contains our conclusions. Finally, in the
appendix an alternative, simpler derivation of the decoher-
*Email address: pamn@if.ufrj.br ence rate is given, which is based on the entanglement be-
"Email address: dalvit@lanl.gov tween the particle and two-photon states.
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Most treatments of the dynamical Casimir effect are based
on the assumption that the mirror follows a prescribed tra-

jectory, thus neglecting the recoi_l effect. Howeve_r, in thiswhereP=—fdan¢ 4.4 is the field momentum operator.
paper we want to focus on the mirror as a dynamical quang  describes, to second orderiirc, the modification of the

tum system, hence the need to tackle the full mirror-plusy,gngary condition for the field due to the motion of the
field dynamics. This has already been addressed in thgror which in its turn is affected by the field radiation

framework of linear-response theory in order to calculate theyessyre. Thus, it provides a coupling between the harmonic
fluctuations 'of'the position of a dispersive mirror driven by qeeillator and the field, to be treated within perturbation
vacuum radiation pressuf&4], and related calculations have theory. The small perturbation parametenis, and not the

been performed in Ref$15-17 to derive mass corrections yansnarency frequenc§, which may be arbitrarily large.
caused by t_he Interaction .W.'th. the f|_e|d. . , The first term in Eq(5) is responsible for the effect of de-

We con§|der a_n_onrelauwstlc partially reflectmg mirror of coherence to be discussed here. It also accounts for the ef-
massM (with position g and momentunp) in & harmonic  feqts of emission of photons, dissipation of the mirror's en-
potential of frequencyvq, and under the action of radiation ergy, and part of the mass correction.

pressure. We take a scalar field if-1 dimensions, which

mimics the electromagnetic field modes that propagate alon%ir\:\/?_ clalc_l]:lilaltg the tdr?]nsnyinmatrl]a (t)n dcif rtger CO”:?'?E dti n
the direction perpendicular to the plane of the mirror. Exten- or-plus-ield system using second-order perturbatio

sions to the real 81 case are analyzed in Secs. V and VI theory, and trace over the field operators to derive the master
We neglect third- and higher-order termsuifc, wherev is equation for the mirror's density matriu(t) [18]. We as-

the mirror’s velocity(we setc=1 hereafter, except when an Eu(r)ne_th%t ;it=0 tﬂe mirror tﬁn% fleki are tn.ot <f:(:rr]relfe_1t(|e(;j:
explicit evaluation of orders of magnitude is require@ur ~ P(0)=P(0)@pr, Wherepg is the density matrix of the fie

starting point is the Hamiltonian formalism developed in(assumed to be in some steady state; later in this section we

Refs.[16] and[17] (although these references consider a freetake a thermal equilibrium stgtewe find

mirror, the extension to the harmonic oscillator is straight-

forward). The total Hamiltonian is FE ey <¢2(O)> 2
: iip(t)=[Hm,p(1)]-Q T [p%p(D)] (6)
H=Hy+Hg+Hin, 1)
t
h _ ’ Iy 47 2
where ] R o)
p> Mo
Hu=om+ 2 @ @ +[p P (—t'),p(D}IEN)),

is the harmonic oscillator Hamiltonian for the mirror, and  Where the superscriptindicates the operators to be taken in
the interaction picture. The second term on the right-hand

dx side of Eq.(6) is the contribution in first order of perturba-
He= f 7[H2+((9x¢)2]+9¢2(><=0) (3)  tion theory of thep? term in the interaction Hamiltonigisee
Eq. (5)]. It corresponds to é&utoff dependentmass correc-

is the free Hamiltonian for the fielg and its momentum tion given by

canonically conjugatedl=d;¢. The second term on the
right-hand side of Eq(3) is associated to the boundary con-
dition of a partially reflecting mirror at rest at=0. In the ) ) )
context of the plasma sheet model of REE6], it corre- @S already found in Reff14] and[16]. The (anti-)symmetric
sponds to the kinetic energy of the plasma charged particle§econd-order correlation functiog)( o is defined as

The coupling constanf) plays the role of a transparency

AM;=Q(¢%0)), @)

frequency, since from Ed3) one derives the boundary con- o(t)=C(t)+C(-1), ®
dition
§()=C(t)—C(-1), 9
dxp(07) = 3, p(07)=20¢(0)
with
(¢ is continuous atx=0), which yields a frequency-
dependent reflection amplitudi@4,16: C(t)=(P'()P'(0))—(P)2. (10
R(w)=—i 4) When computing the correlation functions, we take the un-
w+iQ’ perturbed field, which corresponds to the static boundary
condition (eigenfunctions oH).
Finally, the interaction Hamiltonian is given by Replacing the free evolution f@'(—t’) in Eq. (6) yields
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AM(t) p?

ihp=|Hy— v am P | TWlpfa.p}]

~ Dy(Olp.p.p]1-5 Do(Dlp Lap]]. (1D

The total mass correction iIAM=AM;+AM,, where
AM,, as well as the remaining coefficients in Efjl), origi-
nate from the first term on the right-hand-side of Eg),
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The equal-time second-order correlation function in @)
corresponds to the force on the stasimgle mirror. It van-
ishes since the vacuum radiation pressures exerted on each
side of the mirror are in perfect equilibrium. On the other
hand, the fourth-order correlation function may be expressed
as a sum of second-order correlation functigmsth the
fields taken at different timeswhich are calculated with the
help of the normal mode expansion for the field. They are
directly connected to the average number of photaps

taken in second-order perturbation theory. Their meanings 11 exp@«/T)—1] in the mode of frequency at tempera-
are best understood when writing the Fokker-Planck equalire T (we take the Boltzmann constakg=1). It is useful

tion for the Wigner functionV(x,p,t):

W= —(1—AM/M)%&XW+ M w3x W+ 2L d,(xW)

3? 3

+D; W. (12)

a2 Peaxap

AM, and the damping coefficiert are calculated from the
anti-symmetric correlation function:

i [t
AMz(t)z;L—fodt’cos{wot’)g(t’), (13

r(t)= 0o ftdt’siMw tYEL): (14)
2M7 o 0 ’

whereas the diffusion coefficients are associated to the sym

metric correlation function:

1 t ! ! !
Dl(t)szodt cog wgt’)o(t'), (15)

t
Dz(t):;—l\;fodt'sin(wot')o(t'). (16)

We assume the field to be in a thermal st@genperature

T), and take the following strategy to calculate the momen-

to write the result in the Fourier domain, the Fourier trans-
form of the antisymmetric correlation functiof(t) being
defined as

fo1- | drexplioné. (19
Equations(9) and(18) yield
fwl=Elw]+ o], (20)
where
Elw]=(2ImH*QL(wlQ) (21
with
(W) =In(1+u?)/(2u)+ (arctaru)/u®>—1u (22

represents the correlation functionTat 0 (vacuum fluctua-
lons), whereas

T _Zﬁzﬂsz ) o’ G N—G(— )
g [(1)]— 7Ta)2 0 w w,2+02[ ((1),(1) ) ( w,® )]
(23)
with
G(w,0') =]’ = o|(N,_,— (0 —o)n,) (24

represents the thermal fluctuationsi§ the sign function
Symmetric and antisymmetric correlation functions for a

momentum is minus the radiation pressure force on the mirgay [25 26):

ror [16]:
|

dp —
— =2Q¢(01)dxd(0.1),

where d,¢(0t) =[ d,$(0") + d,(07)]/2. Using Eq.(17),
we calculateC(t) by integrating the correlation function of
the field calculated at=0:

t 0 —
ct=207 | dt | dui(aotiso)

X $(0t2) h(0t2))
—((01t1) 3xp(0t1) ) B(Ot2) dyp(012))] (18)

flo]
. how)\’
aml 27
According to Egs(14) and(15), this result provides a gen-
eral relation between diffusion and damping, in the spirit of
the fluctuation-dissipation theorem. This relation is particu-
larly simple for the asymptotic values of the coefficients
I'(t) andD,(t) att—oo. Since the integrands in Eq§l4)

and (15) are even functions of time, we may extend the in-
tegration range te-«, yielding

(25

olw]=

o
I'= m f[ a)o] (26)
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and s[pl=1—trp?, (29
1 which is zero for a pure state and greater than zero for a
Di=——ol wg]. (27) statistical mixture. In general this is a difficult problem be-

4m? cause complicated entanglement between system and envi-
ronment develops on account of their mutual interaction. So
Thus, the asymptotic values &f and D, are directly con-  far, results have been successfully derived assuming that the
nected to the fluctuations at the mechanical frequengy initial state of the system is pure. Here we follow the same
allowing us to derive, from Eq(25), a simple and general approach, and calculate the rate of entropy increase starting

relation between these two coefficients. On the other handrom the master equatiofil). We assume that the state is
no such simple connection exists for the remaining timenearly pure at time to find

dependent coefficienta M, andD,, whose asymptotic val-

ues result from the joint contribution of the whole spectrum , 4Dy(t) , 2Dy(t)
of fluctuations[13]. s(t)=2I'()[s(t) - 1]+ 2 Ap“+ 22 Tap
Combining Eqgs(25)—(27), we find
(30)
D, h r (2 Where Ap?=(p?*—(p)? is the momentum dispersion and

Mawq tanHh we/2T)’ oqp={10.p})—2(p){(q). Here (...)=tr(...p), and all
operators are evaluated at the same tim&he first term
a clear manifestation of the fluctuation-dissipation theoremin Eq. (30) leads to a decrease of entropg(t)=1
According to Eq.(28), the temperature dependence of the—exg 2/tI'(t")dt'], hence damping tries to localize the state
diffusion coefficient is determined, apart from tfiedepen- competing against diffusion. This decrease is independent of
dence of the damping coefficieht(to be discussed latgtby  the initial state of the system, and therefore is irrelevant for
the relative importance of the thermal fluctuatidasd their ~ determining the pointer states.
corresponding energy¥) with respect to quantum fluctua- We assume that the typical decoherence time scale is
tions (and their corresponding zero-point energyy/2). In  much larger than the period of free oscillation/2v, so that
the high-temperature limitT>%wy/2, Eq. (28) yields D;  we may integrate Eq30) to find the entropy at an interme-
=2TI'/(Mw}3). In the theory of Brownian motiorl; is aT  diate time 7=n 2/ w,. We taken>1, allowing us to re-
independent phenomenological constant, and hence the diflace the time dependent coefficients by their constant
fusion coefficient is a linear function of temperature in thisasymptotic values, but assume thas much shorter than the
limit. Here, however]' has an explicit temperature depen- decoherence time scale, in order to be consistent with the
dence, to be analyzed in Sec. V. small-entropy approximation underlying E0). Moreover,

From Eq.(28), we shall derive a relation between deco- in this weak-coupling limit, we may take the free evolution
herence and damping time scales, valid for any temperaturgorresponding to the harmonic oscillator Hamiltontdgy)
T. Before considering a specific superposition state, howfor the mirror's operators in Eq:30). The correlation func-
ever, we discuss, in the next section, the degree of sensitivit{on o, , oscillates around zero, and then does not contribute
of different states in the Hilbert space to the action of decoto s(7), whereas the free evolution dfp?(t) mixes up po-
herence. We also analyze in more detail the precise meanirgjtion and momentum fluctuations, yielding
of t—oo (in the particular case of =0), in order to know
how fast the coefficients approach their asymptotic values.
From Eqs.(14) and(15) alone it may be shown, in a general
way, that asufficientcondition ist>1/wq, but in some cases
the convergence may be much faster. where (Ap)§ and (Aq)§ represent the dispersions for the
initial state. From Eq(31), we find that the minimum en-
tropy given the constraintAqAp=#/2 is for Aq?
=hl/(2Mwg), Ap?=Mtwy/2. Hence, as in the Caldeira-

Different criteria have been introduced in the literature inLeggett model, and for any temperature of the field, the
order to find out the states in the Hilbert space that are mogtointer basis consists of coherent stgt28]. In this weak-
robust under the interaction with the environment and becoupling approximation, the minimum value corresponds to
have more classically19—-21]. Here we shall follow the one s(7)=0, hence the increase of entropy of a coherent state is
introduced by Zurek, the so-called “predictability sieve.” a higher-order effect.
The idea is to take every possible state of the Hilbert space, The crucial approximation in the derivation of E@@1)
calculate its entropy, and order the states in a tower accordrom Eq. (30) is the replacement of the time dependent co-
ing to increasing entropy. The most classical states are thosficients by their finite, constant asymptotic values. It is
that lie at the bottom of that tower, and correspond to thénstructive to analyze in more detail the behavior of the co-
most predictable ones. For these “pointer” states, informa-efficients and its connection with entropy production. As an
tion loss due to the interaction with the environment is mini-example, we také =0, and consider first the perfectly re-
mal. This philosophy is put in quantitative terms by minimiz- flecting limit, which corresponds t@,<(}, for in this case
ing the linear entropy of the system, the relevant field modes have frequencies much smaller than

_ Dy 2 2 2
S(1)=2757[(Ap)o+ (Mwo)*(AQ)g—Mhiwo], (31

Ill. POINTER STATES

042103-4



RADIATION PRESSURE AS A SOURCE OF DECOHERENCE PHYSICAL REVIEWGR 042103

14 T T T T 4

13 ' — D,(® /D,
Cwoo T D)/ M @, D))

‘ ———- T(®)/T

35

s = B
Ir®y/r

©
T

]
'
1
|II
25 H
f
]
"
1
'

L5 gt

— D,®)/D,
----- D,/ M ®,D,) 05
—==-T®)/T | ':

diffusion and damping coefficients
<
°
o
-
o
.t
3
22
o
-
o
®
diffusion and damping coefficients

FIG. 2. Diffusion and damping coefficients for zero tempera-

FIG. 1. Diffusion and damping coefficients for zero temperatureture T=0 as a function of time in the high-transmission limit
as functions of time in the perfectly reflecting limiby/Q=10"* wo/Q=10">1. Here D;=#202In(w/Q)/27M?w, and T
<1. Here D;=#%wy/12aM? and I'=fwd127M are the =#02In(wy/Q)/27M are the asymptotic limits db,(t) andI'(t).
asymptotic limits ofD,(t) andI'(t). The insets show the behavior
of these two time-dependent coefficients for short times. oscillations. Hence Eq31) also holds in this case, although

the rate of entropy increase is much smaller than in the per-

the mirror's transparency frequency. In Fig. 1 we plot tthecﬂy reflecting limit.
diffusion and damping coefficients as functions wft for

wo/Q=10"% and T=0. The damping coefficienl” ap- IV. DECOHERENCE VERSUS DAMPING
proaches its asymptotic value very fast, fer1/(), whereas
D,(t) develops an initial jolt for times of the order 6f ! In this section, we derive a general relation between

and then decreases to the asymptotic value)f,s damping and decoherence time scales, starting from the
=#h2wo/(12wrM?) for t~1/wy. When we integrate Eq30)  fluctuation-dissipation result given by E®8). As an ex-
over many periods of oscillation, the contribution to the en-treme case of decoherent dynamics, we consider a superpo-
tropy of the initial jolt is negligible, allowing us to replace sition of two coherent states, since they correspond to the
D, by its asymptotic value. pointer states, according to the results of Sec. Ill. Specifi-
In Ref.[27], it was shown that no net entropy is producedcally, we take att=0 the even superposition state),
for the Caldeira—Leggett model with an adiabatic environ-=(|a)+|—a))/y2, with a=iP/2M#%wq, so that the co-
ment, since all the time-dependent coefficients are oscillatinherent states are initially along the momentum axis in phase
functions around a zero mean. At first sight, the same wouldpace, and- P, are the average values of momentum of the
happen in our model wheay> (), for in this case the domi- components at=0. We also assume thp#|>1, hence the
nant field frequencies are slow with respect to the mirror'saverage energy of the state components is much larger than
translational time scale. However, as discussed in Sec. V, thfe zero-point energy. The corresponding Wigner function is
spectral densitg(w) decays too slowly fow>(, and as a
consequence field frequencies of the ordewwgfprovide a q p? 2Pyq
significant contribution even in this limit. Thus, one cannot W= W+ %ex;{ N 2(Adn)? B 2(A 2]COS< 3 )
ascribe a frequency cut off to the environment such that the (AQo) (APo) (32
typical frequency of the system, is much greater than the
maximum frequency of the environment. Therefore, thewhereAq,=\%/(2Mw,) and Apy=4/(2Aq,) are the po-
vacuum field does not behave adiabatically in the sense Gfition and momentum uncertainties of the ground stétg.
Ref.[27]. In our case instead, the diffusion coefficients 0s-corresponds to the statistical mixture
cillate around a nonzero value, leading to a net entropy in-

2

crease. In Fig. 2, we plot the diffusion and damping coeffi- pm=(la)a|+|—a){—al|)/2. (33
cients as functions ofogt for wy/Q=10* and T=0. They
oscillate around their asymptotic values wiingulaj fre-  In phase spacélV,, has two Gaussian peaks along the mo-

quencyw, and with an amplitude of oscillation that decays mentum axis at-Pg. py, is a classical state in the sense that
in a timet~1/Q> 1/w,. The oscillatory terms do not con- W,,, being positive defined, may be interpreted as a prob-
tribute to the entropy increase when we average over mangbility distribution in phase space. On the other hand, the
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nonclassical nature of the superposition state is featured by When written in terms of distances in phase space, the
the remaining term in Eq(32), representing the coherent results above are also valid for more general superposition
interference between the two state components, and whicftates, like [0)+ |a))/\2. Moreover, their range of validity
oscillates into negative values along the position axis. is not limited to the radiation pressure coupling considered
Diffusion along position, associated to the coefficiBnt here. In fact, Eq9.36) and(37) are in perfect agreement with
averages out the oscillations of the interference term at a rat#e results obtained in the framework of the Caldeira-Legget
1itq, to be calculated from the Fokker-Planck equatip®  phenomenological model for quantum dissipafi6h This is
[22]. According to EQ.(32), the oscillations are faster the hardly surprising, since they rely on general properties of the
higher the value oPy, so thatty is a decreasing function of correlation functions associated to the fluctuation-dissipation
|a|. As in Sec. Ill, we assume that decoherence is very slowtheorem. Equation(35), which interpolates the low- and
1hy<wq, SO that several free oscillations take place beforenigh-temperature limits, is also discussed in R6f, in the
coherence is lost. In this limit, the particle has enough timecontext of a two-level system. The temperature dependence
to probe the harmonic potential before diffusion takes placefor the ratio between decoherence and damping times has a
and as a consequence decoherence is governed by thinple interpretation: at>0, the time scale for the relax-
asymptotic value oD, which is directly connected to the ation of the populations is shorter tharl"1éxactly by the
field flucutuations at the frequency of oscillatiag, accord-  factor tanhfwy/2T), on account of the contribution of ab-
ing to Eq.(27). This condition holds for most experiments, sorption and stimulated emission. Here this factor originates
where mesoscopic superpositions are employed so as to reflem the general relation between symmetric and antisym-
der decoherence slow enough to be meas{Bgsl. More-  metric correlation functions, E¢25), which is at the heart of
over, it always applies in the case of vacuum radiation presthe fluctuation-dissipation theorem.
sure (T=0), as shown in Sec. V. Diffusion is maximum  The peculiarities of the radiation pressure model consid-
when the state components are along the momentum axisred here are contained in the damping fat&kather than a
from Eq. (32), we find aﬁWm—(ZPolh)ZW; and vanishes phenomenological input parameter, it is computed from first
when the two wave packets reach the turning points in thegrinciples, first forT=0 in Sec. V, and then fof>#wg in
harmonic potential. The average over many oscillation yieldssec. VI.

2
— 2PoD4 (34) V. VACUUM FIELD
= PEa
max

11 TW
Hlw

At T=0, the spectral density is given by Eq&1) and
q_(22). This result is more easily obtained from the following
argumenta similar method, applied for the force correlation

function, may be found in Ref$23] and[24]). SinceP is

1 ’_(ﬁwo) 1 quadratic in the field operators, the correlation functiii)

that combined with the fluctuation-dissipation theorem, E
(28), yields the following result for the decoherence titge

tq=——tan >T IT (35 may be calculated from the two-photon matrix elements of

2
4| the momentum operator as follows:

A T=0 (or more generally, fol <% w,), Eq. (35) yields 1 (e "
tqy=1/(4|«|T). This result may be written in terms of the  C(t)= —f dwlf dw,(0|P(t)| w1, w,){ w1 ,w,| P|O).
distanceAP=2P, between the two components in phase 2Jo 0
space at=0, or in terms of the distanc&Q=AP/(M wg) (38)

att=m/2wg: We h
€ have

Apo\®1  [Aqo|?1
r

tf“(ﬁ 20, T (36) (0| P(t)| @1, ) =exf —i(wy+ w,)t](0|P(0)| 0y, wp)

The interpretation of Eq(36) is clear: decoherence is faster since only the annihilation operators contribute, and hence
the more separated the state components in phase space are.

Here the zero-point fluctuations define the reference of dis- o %

tance in phase space. At high temperatures, on the other C[w]=ﬂf dwlf dw,|(0P(0)|wy,w,)|?

hand, this reference is provided by the thermal de Broglie 0 0

wavelengthht=%/{J2MT. In fact, Eq. (35 yields, for T X S(w—w1— wy). (39
>hwo,

5 Thus, atT=0 the fluctuations at théositive) frequencyw,
¢ _fhog 11 (ﬁ) 1 (37  Originate from two-photon statefw;,w,) such thatw,
a7 2T 4la|? T AQ) T'” + w,=w. In the dynamical Casimir effect, the oscillation at
the mechanical frequency, gives rise to the emission of
Equation(37) also shows that the ratio between decoherencg@airs of photons of frequencies; and w,, such thatwg
and damping rates is larger at high temperatures by the facter w1+ w,. On the other hand, according to Eg6), I origi-
2T/ (A wg). nates from the fluctuations at frequen®y, and hence
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0.2 ‘ ‘ ‘ Equation(42) is directly connected to the well-known for-
mula for the dissipative Casimir force on a single perfect
moving mirror[11], F=#x"/(6m), for the equation of mo-
tion then read$28|

a . ) + ﬁX/H 43
é 0.1 | X' = wOX 67M’ ( )
N
whose solution wherh wg/M<1 is
fiw?
— —iwpt _ 0
X=Xp€ exp( 27 M t)
% 10 20 30 40 ) )
w/Q The decoherence time scale &0 in the perfectly re-
FIG. 3. Spectral density for zero temperature. flecting limit is derived from Eqs(36) and (42):
3 27
T Wy [* * 2 td:F(u—' (44)
I'= aME ) dw; o dwol(w1,w,| Pl0)|“8(wo— w1~ wy), 0

(400  wherev=Py/M is the initial velocity of the wavepackets.

Being of the order of §/c)?, the decoherence rate is very

rendering explicit the connection between damping and thémall atT=0 (or, at any rate, in the nonrelativistic limit
photon emission effect. In the Appendix, we present an alconsidered heje Since wgty>1, decoherence is the cumu-
ternative derivation of Eq40), starting from the two-photon lative effect of several free oscillations in the harmonic well,
emission probabilities and making use of energy conservawhich justifies the approach employed in the derivation of

tion. Eqg. (34) and the use of the asymptotic value g(t).
Equation(39) also shows tha€[ w] vanishes for negative In order to further understand how the dynamical Casimir
frequencies, and as a consequencgw]=¢e(w)é[w] in  effect engenders decoherence, we present, in the Appendix,

agreement with Eq(25). Finally, the result of Eq(21) fol- an alternative approach, where we follow the evolution of

lows from Eq.(39) by using again Eq(17) [16]. In Fig. 3, the complete oscillator-plus-field quantum state. It shows
we plot {(w/Q) as a function of its argument. According to that the superposition state decoheres because the two wave-
Eq. (21), the transparency frequendy defines a scale for packet components oscillating out-of-phase yield amplitudes
the behavior of the spectrum of fluctuations in vacuum. Foifor emission of photon pairs with opposite signs. As a con-
w<Q, the spectrum is lineat(w/Q)~w/(6Q), and goes Sequence, an entangled mirror-plus-field state is developed,
to zero slowly, as Ing/Q)/(w/Q), for o>, due to the high-  given by
frequency transparency of the mirror.

The damping coefficient at zero temperature is obtained!¥)at=B(AD)[#)®0)
from Egs.(21) and(26), or alternatively from Eq(40):

+ %fo dwlfo dwy b(w,0;A0) 1)@ |01, w,),

(42) (45)

. ﬁQwO (O]
T 2aM cl Q)
where|¢/),= (| ) —|— a))//2 is the odd superposition state,
b(w,,w,;At) is the amplitude for emission of a photon pair
with frequenciesw; and w, during At (the explicit expres-
_ hwg 42) sions are given in the AppendjxandB is the amplitude for
T 127M “O persistence in the vacuum state:

In the perfectly reflecting limitwy<Q), Eq. (41) yields

Thus, the damping induced by the Casimir effect is a small  |g(at)|2=1— %Jwdwlfwdwﬂb(wl,wz,At)lz. (46)
perturbation of the free harmonic oscillations. The ratio be- 0 0

tween the zero-point energy and the rest energy appearing in

Eq. (42 is also of the order of the recoil velocity of the  The density operators of the odd and even superposition
mirror divided byc, which is, as explained in Sec. Il, the states differ by the sign of the interference terpy,=p
small parameter of the perturbation approach leading to the-p,, [pm is defined in Eq(33)]. Accordingly, when com-
master equatiofill). For larger values ofvy/(), the damp- puting the reduced density matrix of the mirrgs(At)

ing as given by Eq(41) is still smaller, since vacuum fre- =tr;eq(|¥)a(¥]), the contribution of the two-photon states
guencies of the order ob, are not well reflected by the in Eq.(45) reduces the coherence of the state. With the help
mirror in this case. of Eq. (46), we find
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Apini= i AD) = pirt(0) given by Eq.(23). When the temperature is also higher than
the cutoff energyi (), all relevant frequencies in E¢23),
_ lfwdw J’”’dw b(wy, 05 A1) |2pin(0) which are smaller or of the order &, are much smaller
2Jo t)o S Pind =) than T/%. Then, we may take the approximatiom,,
~T/(hw'), yieldin
47 (hw’), yielding
The two-photon probabilities are proportionalAo and con- T wo]= zﬁQT_ (52)
nected to the damping ralé as discussed in the Appendix. 0]

Hence Eq(47) yields
Replacing Eq(52) into Eq. (26) yields

dpint  Apint Pint
dt At ty’ “8) _or
r IV (53

with ty4 given by Eq.(36).

In this derivation, the expression for the emission ampli-in agreement with the result for the viscous radiation pres-
tudesper seare not of any relevance—only its connection syre force obtained in Reff26]: F=—QTq(t).
with the damping ratd” is important. This connection is From a practical point-of-view, the opposite limftw,
based on the principle of energy conservation: the energy okT<#() is more interesting for particles that scatter visible
the oscillator is damped at the rate at which energy is raditight ((~10'® Hz). In this case, the corresponding reflec-
ated. Since this argument also holds for the reall®lec- tivity amplitudeR(w) is approximately constant for the field
tromagnetic field, we may extend our results by replacing thenodes whose frequencies are smaller or of the ord@vbf
3D result forI' into Eq. (36). The dissipative dynamical As a consequence, we may neglect the Lorentzian falloff in

Casimir force on an oscillatingfrequencywo) perfectly re-  gq. (23). Moreover, we replace the thermal photon number
flecting sphere was obtained in RE23]. Usually, the sphere p | in Eq. (24) by
w _(1)0

is very small when compared with the wavelength of the

relevant vacuum fluctuations, which are of the o_rd_er of Ny o ~[expio IT)(1-hwy/T)—1]"L  (54)
27l wg. WhenwoR<1, the force on the sphere of radiBss 0
given by Neglecting second- and higher-order terms#iag/T, we
—#R6 find
F= x©), 49
648 49 oS o
G(wg,w")= ; . 55
wherex®) is the ninth time derivative of the position of the (wo,0") (ehe'mT—1)2 T ®9
sphere. Following again the method of E43), we calculate
the damping ratd" from the equation of motion. We find ~ From Eqgs.(23) and(55) we find
r 1 ﬁngG . A T2
T 12967 M (50) Elwol= 3 oo, (56

showing that the coupling with the vacuum field is reduced.and then
as compared with the 1D case, by thery smal) factor

(woR)®. This reduction factor accounts for the inefficient T
coupling of the small particle, which scatters field modes of I'= I ML’ (57
very long wavelengths. Using E¢36), we find that the de-

coherence time increases by the same factor: which is also in agreement with RdR6]. It corresponds to

24 1 2% the high-temperature, perfeqtly reflecting limit. Har@lays
= ——5—, (51)  the role of frequency cutoff instead 6f, so that the result-

ve (woR)” wo ing damping rate is independent of the latter.
The dissipative force in the high-temperature limit may be
erpreted as the effect of Doppler shift of the reflected ther-
mal photons[26]. For a photon of frequencw, the fre-
quency shift isAw=*= 2wq, the plus and minus signs apply-
ing for counter and co-propagating cases. Hence the motion
gives rise to an unbalance between the radiation pressure

In this section, we compute the damping and decoherenc@xerted on each side of the mirror, corresponding to a mo-
rates whenT># wg. In this limit, vacuum fluctuations are mentum transfeA P=2AE g, whereAE is the reflected en-
negligible when compared with thermal fluctuations, and theergy during a time intervalit. In terms of the density of
dominant contribution in Eq(20) comes fromé', which is  modesg(w), we have

hence decoherence through radiation pressure is a tiny effeﬁ;ﬁ
at T=0. At finite temperatures, however, the effect may be
significant, as discussed in the next section.

VI. HIGH-TEMPERATURE LIMIT
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% 5 basic assumption that allowed us to relate decoherence and
AE= fo do|R(w)[*g(0)n  io, (58 damping time scales with the help of the fluctuation-
dissipation theorem30].

where|R(w)|? represents the mirror reflectivifghe reflec-
tion amplitudeR is given by Eq.(4)]. FromAE, the friction VII. CONCLUSIONS

force is obtained through As in the Caldeira-Legget modE20], coherent states are

the most robust when the radiation pressure coupling with
AE. N . I . N
F=-2—q. (59 the quantum field is considered. This is amazingly in line
At with their well-known status of “quasiclassical” states, i.e.,

the closest possible representation of a classical oscillation in
a harmonic potential well. Superpositions of coherent states
decay into a mixture at a rate proportional to the damping
rate and to the squared distance in phase space. The ratio
between decoherence and damping rates is a simple hyper-
bolic increasing function of temperature, which interpolates
' the zero and high-temperature limits. It originates from the
general relation between symmetric and antisymmetric cor-
relation functions, associated to the fluctuation-dissipation
theorem. Thus, the particular nature of the model for the
coupling with the reservoir seems to be immaterial, as far as
the connection between damping and decoherence is con-
whereV=AAt is the quantization volume) being the sur- cerned. Note, however, that the validity of this result is lim-
face of the mirror(in this case, for simplicity, we assume a ited by the assumption that decoherence is slow compared to
flat rather than spherical mirrprin the limitZw,<T<A(),  the free oscillations.

In the 1D case, the density of modes is frequency inde
pendentg(w)dw=(L/7)dw, whereL= At is the length of
the quantization box. When replaced into E8p), this result
leads, with the help of Eq59), to expressions for the force
in agreement with our results fat, except for a factor of 2
whenfwy<T<AQ [29]. In the 3D case, on the other hand
we have

v,
g(w)dwz—zw do, (60)
T

Egs.(58) and (60) yield We have shown that the radiation pressure exerted by
5 I thermal photons is a very efficient source of decoherence,
AE #RA (= w m AT although the corresponding energy damping effect, associ-

At 72, dwexp(ﬁw/T)— 1 15 #3° 6D ated to the Doppler frequency shift of the reflected photons,
is usually negligible. AfT=0, the energy damping is asso-
As expected, the reflected power featuresThelependence ciated to the emission of photon paifgynamical Casimir

of the Stefan-Boltzmann law, since it is proportional to theeffec. The dominant contribution comes from vacuum fluc-
total blackbody radiation energy in this limit. The friction tuations corresponding to wavelengths of the order of

force is found by replacing Eq61) into Eq. (59). The re- 2mc/wg, which is usually much greater than the size of the

sulting damping coefficient is given by oscillator. As a consequence, the radiation pressure coupling
is inefficient, and both damping and decoherence rates be-

2 4 . .

7 AT come very small. It is however remarkable, from a theoreti-

T 1573 M 62 cq point of view, that the mere inclusion of an unavoidable,

intrinsically quantum effect, is sufficieltin principle) to en-
Since we have neglected diffraction at the borders of thgyender decoherence, and by that means restoring, although in
mirror, this result only applies when the mirror is much a very long-time scale, the classical world.
larger than the thermal photon wavelenath=2##A/T.
The decoherence time is then found by replacing (6. ACKNOWLEDGMENTS
into Eq. (37), which connects damping and decoherence in
the high-temperature limiwe reintroduce the speed of light The authors are grateful to A. Calogeracos and G. Barton

cin order to allow an evaluation of the orders of magnifude [OF correspondence, and to J. Dziarmaga, A. Lambrecht,
M.-T. Jaekel, and S. Reynaud for discussions. P. A. M. N.
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30 cAA?
APPENDIX: ENTANGLEMENT

As a numerical example, we take=50 K, which gives WITH TWO-PHOTON STATES

An=2.9X10"% m, andA=1 mn?. In this case, diffraction
is negligible, and Eq.(63) vyields tys]=1.0x10 2% In this Appendix, we present an alternative, simpler deri-
(AQ3m?]), showing that decoherence is very fast evenvation of the decoherence time scaleTat0, which shows
when the distance between the wave packets is, for instanceore clearly how the dynamical Casimir effect modifies the

in the nanometer range—in this case the decoherence time ggiantum phase of a superposition state and engenders deco-
of the order of a microsecond. Sintgscales as TP, itis  herence. Instead of tracing over the field, we follow its evo-
still shorter, by a factor~8x10® at room temperature. lution during many periods of free oscillation. We first take,
Note, however, that Eq63) only applies whemwgty>1, the  att=0, the mirror-plus-field statee)®|0) (|0) represents
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the vacuum field stajewhere|«) is a coherent state of large Since the source of the radiated energy is the motion of mir-

amplitude:|a|>1. We takea=iq(0)M/2%w, so thatj«) ~ FOF, one may expect that the two-photon probabilities are
is a “semiclassical” state associated to a minimum uncer{€lated to the amplitude decay rdfe The radiated energy

tainty wave packet whose initial velocity i{0). We have ~ duringAtis
shown in Sec. IV that the action of the vacuum radiation

pressure on the motion of the mirror is a very small pertur- £ _ ;J'w f“ ATY[2 n
bation (weak-coupling limij. Thus the time evolution may >Jo doy 0 dglbw1, 02, AV (01 F 02),

be computed from a simple semiclassical model, in which (AB)

the field evolution is obtained assuming the classjpa-

scribedmotion which according to Eq(A5) is proportional to the time in-
. ) terval At. The energy of the mirror decays a&,, /dt=
a(t) =a(0)cog wot), (A1) —2I'Ey,, whereE,,=Mq(0)%2. Hence, from energy con-

whereq(t) is the position of the mirror at timé The dy- servation we have

namical Casimir effect is described by the interaction Hamil-

tonian[see Ref[16], and compare with the first term in Eq. e 1 AE
5] Mq(0)2 At’
Hin=—q(t)P. A2
nt act) (A2) leading, with the help of EqgA5) and (A6), to the repre-
The amplitudeb(At) for the creation of photon pairs corre- Sentation given by Eq40).
sponding to frequencies; and w, at time At is given by To analyze the effect of decoherence, we take the field to

be initially in the “even” superposition stat¢y).= (| a)
i At ) .. _ - P .
b(wy,: Al) = %<w1,w2|7)|0> fo dtreifertot' g (t7), +|—a))/\/2, so that the mirror-plus-field state &0 is
(A3) [¥)o=]1)e®|0).

_Accor_d'”g to Eq.'(AS), the amphtudg depgnds on thign of By linearity, its time evolution is obtained from the two-
q, which is very important to the discussion of decoherencepnoton amplitudes given by E¢A3):

Replacing Eq(Al) into (A3), we find for the two-photon
probabilities

W) a= (@)@ st — )@ )a)/N2, (A7)
1 .

|b(w1,w2iAt)|2~ﬁ|<o|7’|w1,wz>|2Q(0)2 where

| SITL(w1+ 05— wo) A2) . |¢7)at=B(A1)[0)

— 2 o o]
(w1 @z o) i%f dwlf dwy b(wy,wy;AD) |01, 0,).
0 0

For woAt>1, the right-hand side of EqA4) is sharply

peaked around;+ w,= wq. Thus, for large times energy is (A8)
well defined, in agreement with the time-energy uncertainty
relation. In this limit, Eq.(A4) yields The already noted sensitivity of the two-photon amplitudes

to the phase of the motion of the mirror, which is explicit
through the “minus” sign for|¢~) in Eq. (A8), generates
entanglement between mirror and field. This is discussed in

v .
|b(w1,w2;At)|2%%|(O|P|w1,w2>|2q(0)2m
Sec. V, whose starting point is E@5), which is derived by

X 8(wq+ wy— wg). (A5) replacing Eq(A8) into Eq. (A7).
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